Magnetohydrodynamics of insulating spheres
J. W. Haverkort, T. W. J. Peeters
A widespread notion in the field of ‘ideal’ magnetohydrodynamics describing highly conducting fluids there can be no electrical charge accumulation. Any nonzero charge will quickly redistribute over a short enough time-scale to be irrelevant. One can however easily show that in the presence of a magnetic field Lorentz forces can act to sustain a finite charge density, see equation 3. This charge and the associated electric field have a distinct influence on the current distribution and the resulting forces on non-conducting inclusions and bubbles in a conducting fluid as shown in the above picture and explained in the paper.