
Axisymmetric Ideal MHD Tokamak Equilibria

J.W.Haverkort

May 2009

Abstract

These notes are about the Grad-Shafranov equation, which is derived

from the static ideal MHD equations assuming axisymmetry. Selected

aspects of the equation and its analytical solutions are discussed.
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1 Grad-Shafranov equation

1.1 Setting

The considered geometry is that of Fig. 1 in which a cross-section of an axisym-
metric toroidal tokamak is shown. The axis of symmetry is the Z-axis and the
ignorable angle is φ. The R coordinate is a radial coordinate and R0 and a are
called the major axis and minor axis of the tokamak. The ratio ǫ ≡ a/R0 is the
inverse aspect ratio, κ the elongation and δ the triangularity.

Figure 1: The considered geometry.

Plasma floats in a somewhat D-shaped configuration surrounded by a con-
ducting wall. Between the hot plasma and the wall is a vacuum such that
the plasma has to be kept in place with external magnetic fields. Supercon-
ducting magnets produce a large toroidal (in the φ-direction) magnetic field

Bφφ̂ (a hat is used to denote a unit vector) that, combined with poloidal (in
the cross-sectional plane) electric currents Jp inside the plasma, produce an in-
ward Lorentz force J × B counteracting the outward pressure force. Moreover
a toroidal electric current Jφφ̂ is generated in the plasma which, via Ampere’s
law ∇×B = µ0J, produces a poloidal magnetic field also constituting an inward
Lorentz force.

The relevant static magnetohydrodynamic equations are the balance between
the pressure force and the Lorentz force, Ampere’s law and the fact that the
magnetic field B is divergence-free (by a proper rescaling, the constant µ0 can
be left out everywhere in the following):

∇p = J × B , ∇× B = µ0J , ∇ · B = 0 (1)
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1.2 Derivation

We introduce the cylindrical coordinate system (R,Z, φ) shown in Fig. 1 with
the origin at the centre of the tokamak. The magnetic field can then be written
in terms of a magnetic vector potential A as

B ≡ ∇× A = −∂Aφ
∂z

R̂ +

(

∂AR
∂z

− ∂Az
∂R

)

φ̂ +
1

R

∂RAφ
∂φ

Ẑ (2)

We split J and B in a poloidal and toroidal component using ∇φ = φ̂/R

B = ∇ψ ×∇φ+Bφφ̂ (3)

J = ∇F ×∇φ+ Jφφ̂ (4)

With ∇ψ×∇φ = ∇× (ψ∇φ) and ∂φ = 0, the above formulation manifestly
satisfies ∇ · B = 0. Furthermore, with a subscript p denoting the poloidal
components

∫

Bp · dS =

∮

∂S

ψ∇φ · dl =

∮

∂S

ψ · dφ = 2π∆ψ (5)

showing that 2πψ represents the poloidal magnetic flux. The magnetic field
lines therefore lie on surfaces of constant ψ, i.e. B · ∇ψ = 0. Furthermore from
J×B = ∇p we have B · ∇p = 0 such that p = p(ψ) and J · ∇p = ∇F ×∇p = 0

such that F = F (ψ). Note that Bp = ∇× ((ψ/R)φ̂) such that ψ is related to

the magnetic vector potential A. Analogously Jp = ∇× ((F/R)φ̂) such that F
is related to the ‘current vector potential’ B/µ0

ψ = RAφ (6)

F = RBφ/µ0 (7)

The static force balance yields with the proposed split in poloidal and
toroidal components

Jp ×Bφφ̂ + Jφφ̂ × Bp = ∇p (8)

After substitution and noticing φ̂ · ∇ψ = φ̂ · ∇F = 0

−Bφ
R

∇F +
Jφ
R

∇ψ = ∇p (9)

With ∇F (ψ) = dF
dψ∇ψ and ∇p(ψ) = dp

dψ∇ψ this yields after multiplying
with R

Jφ = R
dp

dψ
+Bφ

dF

dψ
(10)
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With Bφ = µ0F/R the first term becomes µ0FdF/dψ leaving only Jφ un-
specified. From Ampere’s law µ0J = ∇×∇× A = −∇2A such that

−∇2A = −∇2Aφ −Aφ/R
2 = −∇2(ψ/R) + ψ/R3 (11)

where use has been made of the non-zero derivatives of cylindrical unit vec-

tors ∂R̂/∂φ = φ̂ and ∂φ̂/∂φ = −R̂ which combine to give ∇2
φφ̂ = R−2 ∂

2φ̂
∂φ2 =

−φ̂/R2. Therefore

−µ0Jφ =
1

R

(

∂2ψ

∂R2
+
∂2ψ

∂Z2

)

+
1

R2

∂ψ

∂R
=

∂

∂R

1

R

∂ψ

∂R
+
∂2ψ

∂z2
= R∇·

(

∇ψ
R2

)

(12)

and inserting in Eq. 10 we obtain the Grad-Shafranov equation

R2∇ ·
(

∇ψ
R2

)

= −µ0R
2 ∂p

∂ψ
− F

dF

dψ
(13)

1.3 Some properties of the GS-equation

With the definition ∆+ ≡ ∂2

∂R2 + ∂2

∂z2 , the elliptic Grad-Shafranov operator

∆∗ψ ≡ R2∇ ·
(

∇ψ/R2
)

satisfies ∆∗ = ∆+ − 1
R

∂
∂R and with the Laplacian

∆ = ∆+ + 1
R

∂
∂R we have ∆∗ = ∆ − 2

R
∂
∂R . The Grad-Shafranov equation

∆∗ψ = −µ0RJφ(ψ,R), can be a linear or non-linear partial differential equa-
tion depending on the ’source’ RJφ.

Nondimensionalizing the coordinates r = R/a and y = Z/a, introducing a
unit flux variable ψ̄ = ψ/ψ1 and scaling the source terms with the vacuum mag-
netic field B0 at R = R0, i.e. p′ = p/B2

0 and 1
2f

′2 = 1
2 (F 2 − F 2

∞)/B2
0a

2 with
F∞ ≡ R0B0 the Grad-Shafranov equation can be written in dimensionless form

r
∂

∂r

(

1

r

∂ψ̄

∂r

)

+
∂2ψ̄

∂z2
= −α2 d

1
2f

′2

dψ̄
− r2α2 dp

′

dψ̄
(14)

The only dimensionless number α2 = (B0a
2/ψ1)

2 can be incorporated into
p′ and f ′ and as such can be used to rescale the solution.

For tokamak applications one typically is interested in equilibria with one or
more elliptic fixed- or stationary-points (where ∇ψ = 0). In modern tokamaks,
field coils are used to produce two hyperbolic fixed-points at the plasma-vacuum
interface which are connected with a separatrix separating the plasma and the
vacuum regions. These elliptic and hyperbolic points can be seen from Fig. 2
as the O- and X-shaped stationary points respectively.

We finally note an analogy between the Grad-Shafranov equation and classi-
cal fluid mechanics, where the Stokes stream function ψ can be used to write
the fluid vorticity as −∆∗ψ/R.
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2 Vacuum

2.1 General vacuum solution

Outside the plasma there is zero pressure and current such that p = F = 0 and
ψ satisfies the vacuum equation

∆∗ψ = 0 (15)

The vacuum field has to ‘match’ with the plasma solution in a continuous
way. Via these matching conditions, the value of ψ outside the plasma is deter-
mined on the one hand by the current Jφ in the plasma, and on the other hand
by the external field coils that might be present.

A general solution is obtained by separation of variables ψ = f(R)g(Z) yielding
(complex) exponentials for g(Z). Usually one only retains the top-down sym-
metric cosine terms for the z-dependence, i.e. g(Z) = cos kZ. The radial equa-
tion yields Bessel’s equation forAφ = ψ/R so that f(R) = R (c1J1(kR) + c2Y1(kR)).
Solutions with different values of k can be superimposed to yield the general
vacuum solution

ψvac =
∑

n

cnR cos (knZ) (J1(knR) + dnY1(knR)) (16)

2.2 Vacuum solution of a circular current loop

Noting that the Green’s function of the Grad-Shafranov operator ∆∗ is given
by

G(R,Z;R0, Z0) = − 1

2π

√

RR0
1

k

[

(2 − k2)K(k) − 2E(k)
]

(17)

with k = 4RR0/((R+R0)
2+(Z−Z0)

2) one can easily solve the GS-equation

for a circular current loop J(R,Z) = Iδ2(R − a, 0)φ̂ in the horizontal plane to

obtain with S ≡ µ0I/4π for the magnetic vector potential A = Aφφ̂ = ψ/R
where

ψ(R, θ)

R
= SR

4(2 − k (R, θ)
2
)K(k (R, θ)

2
) − 2E(k (R, θ)

2
)

√

a2 +R2 + 2aR sin (θ)
(18)

and

k (R, θ) =
4aR sin (θ)

a2 +R2 + 2aR sin (θ)
(19)

With m̂ ≡ πa2IẐ the vector potential for R ≫ a becomes approximately
that of a dipole, i.e. A = µ0

4π
m̂×r̂

r2 with r a radial coordinate from the centre

of the current loop. With (Ẑ × r̂) · φ̂ = r/R one thus finds that for R ≫ a
the poloidal magnetic flux goes to zero as ψ = AφR = Sπa2/r, consistent with
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the notion that the magnetic field of a dipole decays with 1/r2 and the flux
is proportional to the magnetic field times the intersected area. This far-field
condition might be suitable for describing astrophysical plasmas with the GS-
equation.

Figure 2: An example of a solution to the Grad-Shafranov equation, given
by isocontours of ψ. Two vertically separated X-shaped hyperbolic stationary
points are connected by a separatrix, phsyically representing the ‘last closed
flux surface’ separating the plasma region from the vacuum region. An O-
shaped elliptic stationary point inside the plasma is located at what is called
the magnetic axis.
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3 Boundary Conditions

From a practical perspective several types of boundary conditions can be used
[4]

• Fixed boundary: the plasma-vacuum boundary is replaced by the surface
of a perfect conductor and only the plasma region is calculated, using as a
plasma boundary condition Jφ = 0 such that at this boundary ψ−ψvac = 0

• Free boundary: the value of ψ is specified on a closed curve, usually in the
vacuum region. The boundary then follows from a certain iso-contour of
ψ after having obtained a the solution

• Semi-fixed boundary: Several points on the plasma boundary are pre-
scribed

• Constrained boundary: the equilibrium is solved for a given external mag-
netic field and some constraint, e.g. a contact point with the domain
boundary.

One often uses the boundary value problem, formulated in terms of a radial
coordinate r emanating from R = R0 and an angle θ with the R or Z-axis.
Anticipating a single elliptic fixed point, located at what is called the magnetic
axis, the O-shaped stationary point in Fig. 2, it is convenient to make use of
the arbitrariness of a constant shift in ψ to set it to zero there. One often also
sets ψ to 1 at the boundary:

ψ = 1 at r = f(θ), the plasma boundary (20)

ψ = ψR = ψZ = 0 at R = Rm, Z = 0, the ‘magnetic axis’ (21)

This redundancy in the number of boundary conditions fixes the magnitude
(not the shape) of RJφ. The relative magnitude of ∂ 1

2F
2/∂ψ compared to

R2∂p/∂ψ is in turn fixed as well, when one fixes the position R = Rm of the
magnetic axis.
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4 Analytical solutions

The several analytical solutions that exist depend on specific choices for p and
F which occur as ‘source terms’ on the right hand side of the GS-equation

∆∗ψ = −µ0RJφ = −R2 ∂p

∂ψ
− F

∂F

∂ψ
(22)

Given a general solution the plasma boundary can be obtained afterwards by
taking a specific iso-contour of ψ. The vacuum solution then has to be ‘matched’
to this solution. Alternatively a fixed boundary can be used on which the cur-
rent density Jφ vanishes, thereby physically constituting the effect of a perfectly
conducting wall. For mathematical convenience this boundary is usually taken
to be a rectangular domain, owing to the fact that usually solutions are obtained
by separation of variables as ψ(R,Z) = f(R)g(Z) in which case the zeros of the
specific functions f(R) and g(Z) can be used to let ψ vanish on the rectangu-
lar domain. Note that strictly speaking only the non-vacuum part of ψ has to
vanish there.

The obtained analytical solutions discussed below all satisfy p = p0−Aψ− 1
2A

′ψ2

and F = F0 −Bψ− 1
2B

′ψ2 such that −µ0RJφ = (A+A′)R2 +B +B′ψ with a
varying number of the constants A, A’, B and B’ non-zero. Note that in these
cases the GS-equation becomes an inhomogeneous linear PDE. Obviously the
more free constants the source terms contain, the more control can be gained
over the shape and characteristics of the solution.

4.1 Linear source terms (Solovév)

The classical Solovév solution uses A′ = B′ = 0 to obtain a right hand side
−µ0RJφ = AR2 +B. This solution is equivalent to Hill’s spherical vortex solu-
tion from fluid mechanics, with ψ representing the Stokes stream function.

The solution is given in Ref. [8]

ψ = ψh +
A

8
R4 +

B

2
Z2 (23)

where ψh is the homogeneous solution. Note that the constant B on the
right hand side of the GS-equation could also have been provided by a particular
solution depending on R only, yielding ψp = c1 + c2R

2 +(B/2)R2 lnR+AR4/8,
but obviously the above choice is the more convenient one, with A and B of
equal sign allowing for closed flux surfaces.

An interesting aspect of this source function is that the homogeneous solution
is a vacuum solution. We have already discussed the general vacuum solution
in terms of Bessel functions. The homogeneous solution ψh can alternatively be
provided based on the expansion
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ψh =
∑

n=0,2,..

fn(R)Zn with R
d

dR

(

1

R

dfn(R)

dR

)

= −(n+ 1)(n+ 2)fn+2 (24)

where only even powers of n are used to ensure top-down symmetry. Trun-
cating the series for n ≥ 4 yields

ψh = c1 + c2R
2 + c3(R

4 − 4R2Z2) + c4
[

R2 ln(R) − Z2
]

(25)

with four degrees of freedom allowing one to prescribe the minor radius,
aspect ratio, elongation and triangularity. A term linear in R is usually not
considered. Scaling the solution with a constant factor yields a new solution
with the same shape but with a linearly rescaled value of the plasma current.

A specific form of the Solovév solution is given in Ref. [7]

ψ = (C +DR2)2 +
1

2

[

B + (A− 8D2)R2
]

Z2 (26)

with C and D integration constants. Note that ∆∗ψ yields 8DR2 from the
first term and B+(A−8D2)R2 from the second, thereby reproducing the source
term A+BR2. Redefining the integration constants one can rewrite the solution
in terms of the dimensionless coordinates x = (R−R0)/a = r−ǫ−1 and y = Z/a

ψ̄ =
[

x− (ǫ/2)(1 − x2)
]2

+ (1 − ǫ2/4) [1 + τǫx(2 + ǫx)]
y2

σ2
(27)

with ψ̄ = 1 going through (x = ±1, y = 0) and (x = 0, y = ±σ) and τ some
measure of the triangularity. The shift of the magnetic axis is then given by
(
√

1 + ǫ2 − 1)ǫ. The ‘eigenvalues’ A and B are given by

A =
2

σ2
(1 − ǫ2/4 + σ2) (28)

B = 2ǫ(τ(1 − ǫ2/4) + σ2)/(1 − ǫ2/4 + σ2) (29)

4.2 Quadratic source terms

With ∂p/∂ψ = −A′ψ and ∂ 1
2F

2/∂ψ = −B′ψ one has as a source term RJφ =
(A′R2 + B′)ψ. Note that in this case the homogeneous solution is no longer
the vacuum solution. Inserting the assumption ψ(R,Z) = f(R) cos kz into the
GS-equation yields for the R-equation

R
d

dR

(

1

R

df

dR

)

= (A′R2 +B′ + k2)f (30)

Introducing the coordinate transformation ρ = cR2 such that d
dR = 2cR d

dρ
we obtain
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4cρ
d2f

dρ2
=

(

A′ρ

c
+ (B′ − k2)

)

f or
d2f

dρ2
+

(

−A′

4c2
− (B′ − k2)

4cρ

)

f = 0 (31)

which is the confluent hyper-geometric equation, see appendix C. E.g. with
c =

√

−A′/4 the Coulomb wave equation, Eq. 63 for l = 0, is obtained

d2f

dρ2
+

(

1 − 2η

ρ

)

f = 0 (32)

where η = (B′ − k2)/8c so that the solution becomes

ψ = α [FL(η, ρ) + βGL(η, ρ)] cos kz (33)

Note that with c =
√
A′ and κ = (k2 − B′)/4

√
A′ the Whittaker equation

Eq. 60 with µ = 1/2 is obtained.

A linear superposition with different kn and ηm is also possible, but these should
have the same eigenvalue B′

mn = B′ as can be verified by substitution.

4.3 Dissimilar source functions

With ∂p/∂ψ = −A and ∂ 1
2F

2/∂ψ = −B − B′ψ one has as a right hand side
−µ0RJφ = AR2 +B +B′ψ yielding

∆∗ψ −B′ψ = AR2 +B (34)

which has the particular solution ψp = −(AR2 +B)/B′. Note that now the
particular solution instead of the homogeneous solution is a vacuum solution,
i.e. has ∆∗ψ = 0. The homogeneous solution is found [6] by separation of
variables ψh = f(R) cos kZ only keeping cosine terms and solving

R
d

dR

(

1

R

df

dR

)

+ νf = 0 (35)

with k2+ν2 = −B′ in the plasma region and k2+ν2 = 0 in the vacuum. The
equation for f(r)/R is Bessel’s equation so that f(R) = R (cνJ1(νR) + dνY1(νR))
and

ψ(R,Z) = −(AR2 +B)/B′ +
∑

ν

R (cνJ1(νR) + dνY1(νR)) cos kνZ (36)

Alternatively a summation over k could have been used as long as k2 + ν2 =
−B′ is satisfied over the region of the plasma. Note that apart from this condi-
tion the homogeneous solution is the same as the vacuum solution.

Assuming the current density vanishes on the (perfectly conducting) walls
of a square domain from R = R0 ± a to Z = ±b one can take ψh = 0 on
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the boundary because ∆∗ψp = 0. We now choose kn = (n + 1
2 )π/b to ensure

ψh(R,±b) = 0, dmn = −cmnJ1(νm(R0 − a))/Y1(νm(R0 − a)) to ensure ψh(R0 −
a, Z) = 0 and we choose νm be the root of

J1(νm(R0 + a))

J1(νm(R0 − a))
=
Y1(νm(R0 + a))

Y1(νm(R0 − a))
(37)

to ensure ψh(R0 + a, Z) = 0. Now −B′ = (n+ 1
2 )2π2/b2 + ν2

m such that

ψ(R,Z) =
∑

m,n

cmnR

[

J1(νmR) − J1(νm(R0 − a))

Y1(νm(R0 − a))
Y1(νmR)

]

cosπ(n+
1

2
)
Z

b

+
AR2 +B

(n+ 1
2 )2π2/b2 + ν2

m

(38)

An alternative approach is pursued in Ref. [9], in which both the homoge-
neous and the particular solution are expanded as ψ(R,Z) = R

∑

m,n cmnGmn(R,Z))

and −(AR2+B) = R
∑

m,n fmnGmn(R,Z) where the ‘eigenfunctions’Gmn(R,Z)
are the cosine-Bessel combination used in the above solution. The criterion
k2
m + ν2

n = −B′ is relaxed to k2
m + ν2

n = −B′
mn resulting after substitution in

cmn = fmn/(B
′
mn−B′). In this way the entire solution can be written in terms

of the same basis functions Gmn as

ψ = R
∑

m,n

fmn
B′
mn −B′

[

J1(νmR) − J1(νm(R0 − a))

Y1(νm(R0 − a))
Y1(νmR)

]

cosπ(n+
1

2
)
Z

b

(39)
where fmn are the expansion coefficients of −(AR2 + B), but the B′

mn can
be chosen freely. Note that this is just the general vacuum solution Eq. 16 but
without the freedom in the coefficient dn of Y1.

4.4 The most general linear solution

The most elaborate solution available is given in Ref. [1] for arbitrary coefficients
A,B,A′, B′ and is expressed in terms of hyper geometric functions.

4.5 Nonlinear solutions

In Ref. [3] it is shown by some clever transformations that

ψ = − 6

9aR2 + k1(z + c1)2
with k2 = 2a(k1 − 9a) (40)

and

ψ =

√
2

√

−9aR2 + α2(z + c2)2
with β = −27

4
a(α2 + 9a) (41)
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are solutions to the Grad-Shafranov equation with right hand side −µ0RJφ =
−ψ2(k1 + k2R

2ψ) and −µ0RJφ = −ψ3(α2 − βR2ψ2). Given the experimental
obervation of sharp gradients in the physical quantities near the plasma edge,
the dependence of p and F on a high power of ψ is desirable. The use of these
solutions is however limited because the shapes described by these solutions
does not resemble that of a tokamak. For top-down symmetric configurations
c1 = c2 = 0 such that there are, apart from the variables associated with p
and F , also no free parameters that can be used to control the shape of these
solutions.
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A GS in straight cylinder

A.1 Derivation GS-equation in a cylinder

In a straight cylindrical geometry, a derivation analogous to the one used in a
toroidal geometry can be used to rewrite the force balance between the pressure
force and the Lorentz force under the assumption ∂/∂z = 0. Denoting the
z-component of the vector potential with A

B = ∇A× ẑ +Bzẑ (42)

Splitting the Lorentz force into two parts J×B = (jz ẑ)×B⊥ + j⊥ × (Bzẑ).
Using Ampere’s law and some straightforward vector operations µ0J = ∇×B =
−∇2Aẑ + ∇Bz × ẑ so that the force balance becomes

∇p =
1

µ0

[

(−∇2Aẑ) × (∇A× ẑ) + (∇Bz × ẑ) × (Bzẑ)
]

(43)

=
−1

µ0

[

(∇2A)∇A+Bz∇Bz
]

(44)

Rearranging the cross-products above, we see that that

ẑ × B⊥ = ∇A (45)

With ∇p = (dp/dA)∇A and ∇Bz = (dBz/dA)∇A we arrive at the Grad-
Shafranov equation for a straight cylinder

∇2A = −µ0
d

dA
(p+

B2
z

2µ0
) (46)

Using Ampere’s law J = µ−1
0 ∇ × B = 0 one can rewrite the Lorentz force

as −∇B2 + B · ∇B such that the radial component of the force balance in
cylindrical coordinates is written

∂

∂r

(

p+
B2

2µ0

)

=
1

µ0

(

Br
∂

∂r
+
Bθ
r

∂

∂θ
+Bz

∂

∂z

)

Br −
B2
θ

µ0r
(47)

We can distinguish two main simplifying cases

A.2 θ-pinch

With p = p(r), B = Bz(r)ẑ and J = Jθ(r)θ̂ the force balance becomes

d

dr

(

p+
B2
z

2µ0

)

= 0 (48)

which can be integrated to yield p(r) +B2
z (r)/2µ0 = B2

0/2µ0
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A.3 z-pinch

with p = p(r), B = Bzθ(r)θ̂ and J = Jz(r)ẑ the force balance becomes

d

dr

(

p+
B2
θ

2µ0

)

+
Bθ
µ0r

= 0 (49)

which can be integrated by assuming some current distribution Jz(r) and
calculating the associated magnetic field Bθ(r) from Ampere’s law. A parabolic
current distribution e.g. leads to a magnetic field increasing from the centre but
towards the plasma edge is decreasing again due to the fact that the total en-
closed current increases sub-linearly with radius. This means that the magnetic
pressure force will be in the outward radial direction and that the magnetic
tension will have to act to confine the plasma.

15



B Alternative formulations

B.1 Spherical coordinates

In spherical coordinates B = ∇ψ×∇φ+Q∇φ = 1
r sin θ (

1
r
∂ψ
∂θ ,−

∂
∂r , Q) with p(ψ)

and p(ψ) flux functions [5]

∂2ψ

∂r2
+

1

r2
sin θ

∂

∂θ

(

1

sin θ

∂ψ

∂θ

)

+Q
∂Q

∂ψ
+ µr2 sin 2θ

∂p

∂ψ
= 0 (50)

B.2 Dimensionless local coordinates

Nondimensionalizing the coordinates r = R/a and y = Z/a, introducing a
unit flux variable ψ̄ = ψ/ψ1 and scaling the source terms with the vacuum
magnetic field B0 at R = R0, i.e. p′ = p/B2

0 and 1
2f

′2 = 1
2 (F 2−F 2

∞
)/B2

0a
2 with

F∞ ≡ R0B0 the Grad-Shafranov equation is written in dimensionless form

r
∂

∂r

(

1

r

∂ψ̄

∂r

)

+
∂2ψ̄

∂z2
= −α2 d

1
2f

′2

dψ̄
− r2α2 dp

′

dψ̄
(51)

where the only dimensionless number α2 = (B0a
2/ψ1)

2 can be incorporated
into p′ and f ′ and as such can be used to rescale the solution. This generally
occurs for linear equations. For high beta tokamaks the pressure scales as ǫ
and F 2 as ǫ−1, where ǫ ≡ a/R0 is the inverse aspect ratio. In order to have
quantities of order one [2] we take p′ = α2p/ǫB2

0 and f ′2 = α2ǫF 2/B2
0a

2. Now
we notice that the sum of these two profile functions

p′+
1

2
f ′2 =

α2

2ǫB2
0

(

2p+
( ǫ

a

)2

(F 2 − F 2
∞)

)

=
α2

2ǫB2
0

(

2p+

(

R

R0

)2

(B2
φ −B2

0)

)

(52)
For a straight cylindrical θ-pinch, we found 2p = −(B2

φ − B2
0) such that

p′ + 1
2f

′2 = O((α2/2ǫB2
0)ǫ

2B2
0) = O(ǫα2/2). The shape of the two functions p′

and 1
2f

′2 thus do not differ to order ǫ. Therefore a new quantity of order unity
can be introduced g′ ≡ ǫ−1(p′ + 1

2f
′2) measuring the deviation from a θ-pinch.

Finally unit profiles are obtained by introducing Γ′ = g′/A and Π′ = 2p′/AB
with A = g′(0) and p′(0) = 1

2AB and re-shifting them using their values Γ′
1 and

Π′
1 at ψ̄ = 1: Γ = (Γ′ − Γ′

1)/(1 − Γ′
1) and Π = (Π′ − Π′

1)/(1 − Π′
1) to obtain

genuine unit profiles. With x = (R − R0)/a and y = Z/a the Grad-Shafranov
equation then becomes

∂2ψ̄

∂x2
− ǫ

1 + ǫx

∂ψ̄

∂x
+
∂2ψ̄

∂y2
= A

[

Γ(ψ̄) +Bx(1 +
1

2
ǫx)Π(ψ̄)

]

(53)
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C Special functions (from Wikipedia)

The Hypergeometric series is defined as a power series
∑

n βnz
n in which the

ratio of successive coefficients is a rational function of n, i.e. βn+1

βn

= A(n)
B(n) where

A(n) and B(n) are polynomials in n. Alternatively:

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞
∑

n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!
(54)

where the rising factorial or Pochhammer symbol denotes (a)n = a(a+1)(a+
2)...(a+ n− 1), (a)0 = 1. Examples of functions that can be built up like this
are ez, (1 − z)k, z−1 log 1 + z, z−1 arcsin z, z−1 arctan z, etc.

An important special ODE is the hypergeometric differential equation

z(1 − z)
d2w

dz2
+ [c− (a+ b+ 1)z]

dw

dz
− abw = 0 (55)

whose two linearly independent solutions can be built from 2F1(a, b; c; z)..
Every second-order linear ODE with three regular singular points can be trans-
formed into this equation.

A confluent hypergeometric function is a solution of a confluent hyperge-
ometric equation, which is a degenerate form of a hypergeometric differential
equation where two of the three regular singularities merge (Lat. “confluere”)
into an irregular singularity. There exist three alternative formulations

Kummer’s (confluent hypergeometric) function

z
d2w

dz2
+ (b − z)

dw

dz
− aw = 0. (56)

With linearly independent solutions M(a, b, z) (Kummer’s function (first
kind)) and U(a, b, z) (Kummer’s function (second kind))

M(a, b, z) = 1F1(a; b; z) = Φ(a, b, z) =

∞
∑

n=0

(a)nz
n

(b)nn!
(57)

U(a, b, z) =
π

sinπb

(

M(a, b, z)

Γ(1 + a− b)Γ(b)
− z1−bM(1 + a− b, 2 − b, z)

Γ(a)Γ(2 − b)

)

(58)

and has the formal expansion as a power series (which converges nowhere)

U(a, b, z) = z−a · 2F0

(

a, 1 + a− b; ;−1

z

)

. (59)
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Whittaker’s equation

d2w

dz2
+

(

−1

4
+
κ

z
+

1/4 − µ2

z2

)

w = 0. (60)

With as solution the Whittaker functions M,(z), W,(z), defined in terms of
Kummer functions M and U by

Mκ,µ(z) = e−z/2zµ+1/2M(µ− κ+ 1/2, 1 + 2µ, z) (61)

Wκ,µ(z) = e−z/2zµ+1/2U(µ− κ+ 1/2, 1 + 2µ, z) (62)

Coulomb wave equation

d2w

dρ2
+

(

1 − 2ν

ρ
− l(l+ 1)

ρ2

)

w = 0 (63)

where l is usually a non-negative integer. The solutions are called Coulomb wave
functions FL and GL. Putting x = 2iρ changes the Coulomb wave equation into
the Whittaker equation, so Coulomb wave functions can be expressed in terms
of Whittaker functions with imaginary arguments.

18



References

[1] C.V.Atanasiu, S.Gunter, K.Lackner, and I.G.Miron. Analytical solutions to
the Grad-Shafranov equation. Physics of Plasmas, 11(7):3510, 2004.

[2] J.P.Goedbloed. Some remarks on computing axisymmetric equilibria. Com-

puter Physics Communications, 31:123, 1984.

[3] A. H. Khater and S. M. Moawad. Exact solutions for axisymmetric nonlinear
magnetohydrodynamic equilibria of aligned magnetic field and plasma flow
with applications to astrophysics and plasma confinement devices. Physics

of Plasmas, 16(052504), 2009.

[4] K.H.Tsui. Computation of mhd equilibrium of tokamak plasma. 93:1, 1991.

[5] K.H.Tsui. Toroidal equilibria in spherical coordinates. Physics of Plasmas,
15:112506, 2008.

[6] Lai and Verleun. An exact solution for toroidal plasma in equilibrium.
19(7):1066, 1976.

[7] R.Keppens and J.W.S.Blokland. Computing ideal magnetohydrodynamic
equilibria. 46(2), 2006.

[8] S.B.Zheng, A.J.Wootton, and E.R.Solano. Analytical tokamak equilibrium
for shaped plasmas. 3:1176, 1996.

[9] S.Wang and J.Yu. An exact solution of the Grad-Shafranov-Helmhotz equa-
tion with central current density reversal. Physics of Plasmas, 12(062501),
2005.

19


